

27. Suppose the one part of 20 is x and the other part is 20 - x.

Their sum of square is 218

$$x^{2} + (20 - x)^{2} = 218$$

$$\therefore x^{2} + 400 - 40x + x^{2} - 218 = 0$$

$$\therefore 2x^{2} - 40x + 182 = 0$$

$$\therefore x^{2} - 20x + 91 = 0$$

$$\therefore x^{2} - 13x - 7x + 91 = 0$$

$$\therefore x (x - 13) - 7 (x - 13) = 0$$

$$\therefore (x - 13) (x - 7) = 0$$

$$\therefore x - 13 = 0 \text{ OR } x - 7 = 0$$

$$\therefore x = 13 \text{ OR } x = 7$$

If the first part $x = 13$, then second part =

If the first part x = 13, then second part = 20 - 13 = 7or If the first part x = 7, then second part = 20 - 7 = 13Hence, the two parts of 20 case 13 and 7.

28.
$$3x^2 - 2\sqrt{6}x + 2 = 0$$

 $\therefore 3x^2 - \sqrt{6}x - \sqrt{6}x + 2 = 0$
 $\therefore \sqrt{3}x(\sqrt{3}x - \sqrt{2}) - \sqrt{2}(\sqrt{3}x - \sqrt{2}) = 0$
 $\therefore (\sqrt{3}x - \sqrt{2})(\sqrt{3}x - \sqrt{2}) = 0$
 $\therefore \sqrt{3}x - \sqrt{2} = 0 \text{ or } \sqrt{3}x - \sqrt{2} = 0$
 $\therefore x = \frac{\sqrt{2}}{\sqrt{3}} \text{ or } x = \frac{\sqrt{2}}{\sqrt{3}}$
 $\therefore x = \sqrt{\frac{2}{3}} \text{ or } x = \sqrt{\frac{2}{3}}$
Roots of the equation : $\sqrt{\frac{2}{3}}$, $\sqrt{\frac{2}{3}}$
29. Suppose, $S_{1000} = 1 + 2 + 3 + \dots + 1000$
Now, $S = \frac{n}{2}(a + a)$

Now,
$$S_n = \frac{2}{2} (a + a_n)$$

 $\therefore S_{1000} = \frac{1000}{2} (1 + 1000)$
 $\therefore S_{1000} = 500 \times 1001$
 $\therefore S_{1000} = 500500$

So, the sum of the first 1000 positive integers is 500500.

30. Suppose, in $\triangle ABC$, $\angle B = 90$

$$\cos A = \frac{5}{13}$$

$$\therefore \frac{AB}{AC} = \frac{5}{13}$$

$$\therefore \frac{AB}{5} = \frac{AC}{13} = k \qquad k \neq 0$$

$$AB = 5k, AC = 13k$$

According to pythagoras Theoreus, $AB^2 + BC^2 = AC^2$ $\therefore (5k)^2 + BC^2 = (13k)^2$ $\therefore 25k^2 + BC^2 = 169k^2$:. BC² = $169k^2 - 25k^2$: BC² = 144 k^2 \therefore BC = 12k Now, SinA = $\frac{BC}{AC} = \frac{12k}{13k} = \frac{12}{13}$ $tanA = \frac{BC}{AB} = \frac{12k}{5k} = \frac{12}{5}$ Hence, SinA = $\frac{12}{13}$ and $tanA = \frac{12}{5}$ **31.** LHS = sec A(1 - sin A)(sec A + tan A) $= \frac{1}{\cos A} \cdot (1 - \sin A) \cdot \left(\frac{1}{\cos A} + \frac{\sin A}{\cos A}\right)$ $= \frac{1}{\cos A} \cdot (1 - \sin A) \cdot \left(\frac{1 + \sin A}{\cos A}\right)$ $= \frac{(1 - \sin A)(1 + \sin A)}{\cos A \cdot \cos A}$ $= \frac{1 - \sin^2 A}{\cos^2 A}$ $= \frac{\cos^2 A}{\cos^2 A}$ = 1 = RHS**32.** OP is a bisector of $\angle AOB$

 $\therefore \angle BOP = \frac{\angle AOB}{2} - \frac{80^{\circ}}{2} - 40^{\circ}$

$$\therefore \angle BOP = 40^{\circ}$$

 $OB \perp PB, \ \angle OBP = 90^{\circ}$

In \triangle OBP; \angle BOP + \angle OBP + \angle OPB = 180° \therefore 40° + 90° + \angle OPB = 180°

$$\therefore \angle OPB = 50^\circ$$

33. Diameter of hemisphere = Diameter of cylinder d = 14 cm

 $\therefore r = 7 \text{ cm}$

Now, total height = 13 cm

 \therefore Height of cylinder + Radius of hemisphere = 13

 $\therefore h + r = 13$ $\therefore h + 7 = 13$

$$\therefore h = 6 \text{ cm}$$

Total inner surface area of the vessel

= CSA of cylinder + CSA of hemisphere

$$= 2\pi rh + 2\pi r^{2}$$
$$= 2\pi r(h + r)$$
$$= 2 \times \frac{22}{7} \times 7 \times (6 + 7)$$
$$= 2 \times 22 \times 13$$

 $= 572 \text{ cm}^2$

34. Mode :

Here, maximum class frequency is 10 which belongs to modal class 30-35.

- $\therefore l$ = lower class limit of modal class = 30
 - h = class size = 5
 - f_1 = frequency of modal class = 10
 - f_0 = frequency of class preceding the modal class = 9
 - f_2 = frequency of class succeeding modal class = 3

Mode
$$Z = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

$$\therefore Z = 30 + \left(\frac{10 - 9}{2(10) - 9 - 3}\right) \times 5$$

$$\therefore Z = 30 + \frac{1 \times 5}{8}$$

$$\therefore Z = 30 + 0.625$$

$$\therefore Z = 30.625$$

∴ Z = 30.63

35.

Literacy rate (class)	Number of cities (f_i)	<i>x</i> _i	u _i	$f_i u_i$
45 - 55	3	50	-2	-6
55 - 65	10	60	-1	-10
65 - 75	11	70 = a	0	0
75 - 85	8	80	1	8
85 - 95	3	90	2	6
Total	$\Sigma f_i = 35$	_	_	$-2 = \Sigma f_i u_i$

Mean
$$\overline{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h$$

 $\therefore \overline{x} = 70 + \frac{-2}{35} \times 10$
 $\therefore \overline{x} = 70 - \frac{4}{7}$
 $\therefore \overline{x} = 70 - 0.57$
 $\overline{x} = 69.43$

So, mean literacy rate is 69.43%.

36. One shirt is drawn at random from the carton of 100 shirts. Therefore, there are 100 equally likely outcomes.

(i) The number of outcomes favourable (i.e., acceptable) to Jimmy = 88 Therefore,

$$\therefore$$
 P (shirt is acceptable to Jimmy) = $\frac{88}{100}$
= 0.88

(ii) The number of outcomes favourable to Sujatha = 88 + 8 = 96

So, P (shirt is acceptable to Sujatha)

$$=\frac{96}{100}=0.96$$

37. Here, total number of cards = 52

(i) Suppose A be the event the selected card is not a king.

Number of kings card = 4

- \therefore Number of without kings cards = 52 4 = 48
- \therefore The number of outcomes favourable to A = 48

:. P (A) =
$$\frac{48}{52} = \frac{12}{13}$$

(ii) Suppose B be the event the selected card is queen of black colour.

Number of the queen of black colour = 2

 \therefore The number of outcomes favourable to B = 2

 $\frac{14}{3}$

:. P (B) =
$$\frac{2}{52} = \frac{1}{26}$$

Section-C

38. Let $P(x) = 3x^2 - 14x + 5$

then compare with $P(x) = ax^2 + bx + c$

$$\therefore a = 3, b = -14, c = 5$$

$$\alpha + \beta = \frac{-b}{a} = \frac{-(-14)}{3} = \frac{14}{3}$$

$$\alpha \cdot \beta = \frac{c}{a} = \frac{5}{3}$$
(i)
$$\alpha^{2} + \beta^{2} = \alpha^{2} + 2 \alpha\beta + \beta^{2} - 2 \alpha\beta$$

$$= (\alpha + \beta)^{2} - 2 \alpha\beta$$

$$= (\frac{14}{3})^{2} - 2(\frac{5}{3})$$

$$= \frac{196}{9} - \frac{10}{3}$$

$$= -\frac{196 - 30}{9}$$

$$\therefore \alpha^{2} + \beta^{2} = \frac{166}{9}$$
(ii)
$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha\beta}$$

$$= \frac{14}{3}$$

$$3 = \frac{1}{\alpha} + \frac{1}{\beta} = \frac{14}{5}$$

39. $x^2 - 2x - 8 = 0$

 $\therefore x^2 - 4x + 2x - 8 = 0$ $\therefore x (x - 4) + 2 (x - 4) = 0$ $\therefore (x-4) (x+2) = 0$ $\therefore x - 4 = 0 \quad \text{and} \quad x + 2 = 0$ $\therefore x = 4$ and x = -2Let $\alpha = 4$ and $\beta = -2$ Now, Sum of zeros = $\alpha + \beta = 4 + (-2) = 4 - 2 = 2$ and product zeros = α . β = (4) (-2) = -8

40. Here, AP : 10, 7, 4, ..., -62

$$a = 10, d = 7 - 10 = -3, a_n = -62$$

Now, $a_n = a + (n - 1)d$
 $\therefore -62 = 10 + (n - 1)(-3)$
 $\therefore -62 - 10 = (n - 1)(-3)$
 $\therefore \frac{-72}{-3} = n - 1$
 $\therefore n - 1 = 24$
 $\therefore n = 25$

So, there are 25 terms in the given AP.

$$\therefore \ a_{15} = a + 14d$$
$$\therefore \ a_{15} = 10 + 14(-3)$$
$$\therefore \ a_{15} = 10 - 42$$
$$\therefore \ a_{15} = -32$$

41.
$$a = 17, a_n = l = 350, d = 9, n =$$
____, $S_n =$ _____
 $a_n = a + (n - 1) d$
 $\therefore 350 = 17 + (n - 1) 9$
 $\therefore 350 - 17 = (n - 1) 9$
 $\therefore \frac{333}{9} = n - 1$
 $\therefore n - 1 = 37$
 $\therefore n = 38$
Now, $S_n = \frac{n}{2}(a + a_n)$
 38

$$\therefore S_{38} = \frac{38}{2}(17 + 350)$$
$$= 19 (367)$$
$$\therefore S_{38} = 6973$$

42. Let P and Q be the points of trisection of AB i.e., AP = PQ = QB

: Therefore, P divides AB internally in the ratio 1:2

:. The coordinates of P =
$$\left(\frac{1(-7) + 2(2)}{1+2}, \frac{1(4) + 2(-2)}{1+2}\right) = (-1,0)$$

Same as, Q also divides AB internally in the ratio 2:1.

:. The coordinates of Q =
$$\left(\frac{2(-7)+1(2)}{2+1}, \frac{2(4)+1(-2)}{2+1}\right) = (-4,2)$$

Therefore, the coordinates of the points of trisection of the line segment joining A and B are (-1, 0) and (-4, 2).

44. Given . A circle with centre O and a tangent XY to the circle at a

Prove that : OP is perpendicular to XY. i.e. OP \perp XY

Figure :

Proof : Take a point Q on XY other than P and join OQ.

The point Q must lie out side the circle. If Q lies inside the circle, XY will become a secant and not a tangent to the circle.

Therefore, Q is longer than the radius OP of the circle.

i.e., OQ > OP

Since, this happens for every point on line XY except the point P, OP is the shortest of all the distance of the point O to the point of XY.

So, OP is perpendicular to XY.

45. Here r = 6 cm and $\theta = 60^{\circ}$

(i) Length of arc =
$$\frac{\pi r \theta}{180} = \frac{22 \times \frac{2}{6} \times 6\theta}{7 \times \frac{180}{180}} = \frac{44}{7}$$
 cm
(ii) Area of minor sector = $\frac{\pi r^2 \theta}{360} = \frac{322 \times 6 \times 6 \times 6\theta}{7 \times \frac{360}{7}}$
= $\frac{132}{7}$ cm² 6

46. Total number of coins in a piggy bank = 100 + 50 + 20 + 10 = 180

 \therefore Total number of outcomes = 180

(i) Suppose event A is the fallen coin will be a 50 p coin.

$$\therefore P(A) = \frac{\text{Number of 50 p coin}}{\text{Total number of outcomes}}$$
$$\therefore P(A) = \frac{100}{180}$$
$$\therefore P(A) = \frac{5}{9}$$

(ii) Suppose event B is the fallen coin will not be. a \gtrless 5 coin, therefore event \overline{B} is the fallen coin will be \gtrless 5. Number of \gtrless 5 coins

$$\therefore P(B) = \overline{\text{Total number of outcomes}}$$

$$\therefore P(\overline{B}) = \frac{10}{180}$$

$$\therefore P(\overline{B}) = \frac{1}{18}$$

Now, P(B) = 1 - P(\overline{B}) = 1 - \frac{1}{18} = \frac{17}{18}

$$\therefore P(B) = \frac{17}{18}$$

(ii) Suppose event C is the fallen coin will not be a \gtrless 1 coin.

$$\therefore P(C) = \frac{\text{Number of ₹ 1 coins}}{\text{Total number of outcomes}}$$
$$\therefore P(C) = \frac{50}{180}$$
$$\therefore P(C) = \frac{5}{18}$$

Section-D

47. Suppose Indian team scored x runs and Sri Lankan's team scored y runs.

Here the sum of $\frac{1}{3}$ shase of India's and $\frac{1}{7}$ shase of Sri Lanka's runs is 137 runs.

$$\therefore \quad \frac{1}{3}x \times \frac{1}{7} \quad y = 137$$

$$\therefore \quad 7x + 3y = 2877 \qquad \dots (1)$$

Here, the indian team won against Sri Lanka, by the minimum runs required, That is wn by 1 run.

$$x - y = 1 \qquad \dots (2)$$

Multiply equation (2) by 3 and add in equation (1)

$$7x + 3y = 2877$$

$$3x - 3y = 3$$

$$10x = 2880$$

$$x = \frac{2880}{10}$$

$$x = 288$$
From (2)
$$288 - y = 1$$

$$288 - 1 = y$$

∴ *y* = 287

Hence, the Indian team scored 288 runs and the Sri Lankan team scored 287 runs.

48. Suppose the price of 1 kg tea is x and sagar is y Rs. respectively.

Let Price of 1 kg of tea is seven times the price of 1 kg sugar.

 $\therefore x = 7 y$

 $\therefore x - 7y = 0 \qquad \dots (1)$

Let the price of 5 kg of sugar and 2 kg of tea is Rs. 380.

 $\therefore 2x + 5y = 380$...(2)

Multiply equation (1) by 2 and subtract equation (2)

 $\therefore y = \frac{-380}{-19}$ $\therefore y = 20$ From (1) x - 7 (20) = 0 $\therefore x - 140 = 0$ $\therefore x = 140$

Hence, the price of 1 kg tea is 140 Rs. and the price of 1 kg sugar is 20 Rs.

49. Given: In ABC, a line parallel to side BC intersects AB and AC at D and E respectively.

Proof : Join BE and CD and also draw DM \perp AC and EN \perp AB.

Then,
$$ADE = \frac{1}{2} \times AD \times EN$$
,
 $BDE = \frac{1}{2} \times DB \times EN$,
 $ADE = \frac{1}{2} \times AE \times DM$ and
 $DEC = \frac{1}{2} \times EC \times DM$.
 $\therefore \frac{ADE}{BDE} = \frac{\frac{1}{2} \times AD \times EN}{\frac{1}{2} \times DB \times EN} = \frac{AD}{DB}$...(1)
and $\frac{ADE}{DEC} = \frac{\frac{1}{2} \times AE \times DM}{\frac{1}{2} \times EC \times DM} = \frac{AE}{EC}$...(2)

Now, Δ BDE and Δ DEC are triangles on the same base DE and between the parallel BC and DE.

then, BDE = DEC ...(3)

Hence from eq^n . (1), (2) and (3),

$$\frac{AD}{DB} = \frac{AE}{EC}$$

50. Fill in the blank given in the proof of the question below. If $\triangle ABE \cong \triangle ACD$ in the given figure, prove that $\triangle ADE \sim \triangle ABC$

Given: $\triangle ABE \cong \triangle ACD$

To Prove: $\triangle ADE \simeq \triangle ABC$

Proof : Here $\triangle ABE \cong \triangle ACD$ (Given).

 \therefore AB = AC and AE = <u>AD</u> (CPCT)

$$\therefore \quad \frac{AE}{AC} = \frac{AD}{AB}$$

Now in $\triangle ADE$ and $\triangle ABC$,

we have,
$$\frac{AE}{AC} = \frac{AD}{AB}$$

 $\angle DAE = \angle BAC \ [Same (common) angle]$

SAS According to condition,
$$\triangle ADE \sim \triangle ABC$$

$$r^2 = 100$$

 $\therefore r = 10 \text{ cm}$

...

Now, the volume of spere =
$$\frac{4}{3} \pi r^3$$

= $\frac{4}{3} \times 3.14 \times 10 \times 10 \times 10$
= $\frac{4}{3} \times \frac{314}{100} \times 10 \times 10 \times 10$
= $\frac{12560}{3}$
= 4186.67 cm³

Hence, the volume of the sphere = 4186.67 cm^3

53. Cylinder Cone h = 2.1 m r = 2 m d = 4 m l = 2.8 mr = 2 m

The area of convas = CSA of cylinder + CSA of cone

$$= 2\pi rh + \pi rl$$

= $\pi r (2h + l)$
= $\frac{22}{7} \times 2 \times [2(2.1) + 2.8]$
= $\frac{44}{7} \times 7$

$$= 44 \text{ m}^2$$

Now, Cost of canvas = Area of canvas \times Cost of canvas

= 44 m² \times ₹ 500 per m²

So, it will cost ₹ 22,000 for making such a tent.

54.

Length (in mm)	class	Number of leaves (f_i)	cf
118-126	117.5 – 126.5	3	3
127-135	126.5 - 135.5	5	8
136-144	135.5 - 144.5	9	17
145-153	144.5 - 153.5	12	29
154-162	153.5 - 162.5	5	34
163-171	162.5 - 171.5	4	38
172-180	171.5 - 180.5	2	40
Total	_	40	_

Here, n = 40

$$\therefore \ \frac{n}{2} = \frac{40}{2} = 20$$

The cumulative version 20 immediately after 29 is included in the observation class 144.5 - 153.5, so the median class is 144.5 - 153.5.

l = lower limit of median class = 144.5

- cf = cumulative frequency of class preceding the median class = 17
- f = frequency of median class = 12
- h = class size = 9

Median
$$M = l + \left(\frac{n}{2} - cf\right) \times h$$

 $\therefore M = 144.5 + \left(\frac{20 - 17}{12}\right) \times 9$
 $\therefore M = 144.5 + \frac{3 \times 9}{12}$
 $\therefore M = 144.5 + 2.25$
 $\therefore M = 146.75$

Thus, median length of leaves is 146.75 mm.